<aside> 🔖 A compound proposition that can never be true is called a contradiction. A compound proposition that is always true is a tautology(恒真式). All other proposition are contingencies.

</aside>

MATH1019L3.m4a

We’ve seen that for instance $p\rarr q \ and\ \neg p \vee q$ represent the same logical function.

Two columns u and v are the iff $u \lrarr v$ consists entirely of T.

ie. $u \lrarr v$ is a tautology.

When $u \lrarr v$ is a tautology,

we say $u\equiv v$(logically equivalent to)

$u$ $v$ $u\lrarr v$
T T T
F F T
Equivalence Name
$p \wedge T \equiv p \\ p\vee F \equiv p$ Identity laws
$p \vee T \equiv T\\p\wedge F \equiv F$ Domination laws
$p \wedge p \equiv p \\ p\vee p \equiv p$ Idempotent laws
$\neg(\neg p) \equiv p$ Double negation law
$p\vee q \equiv q \vee p\\ p\wedge q \equiv q\wedge p$ Commutative laws
$(p \vee q )\vee r \equiv p \vee (q \vee r) \\ (p \wedge q )\wedge r \equiv p \wedge (q \wedge r)$ Associative laws
$p \vee (q \wedge r) \equiv (p \vee q)\wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q)\vee (p \wedge r)$ Distributive laws
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ De Morgan’s laws
$p \vee (p \wedge q) \equiv p \\ p \wedge (p \vee q) \equiv p$ Absorption laws
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ Negation laws

De Morgan’s Laws(Round One)

for propositional logic

$$ \neg (p \wedge q ) \equiv \neg p \vee \neg q\\ and \\ \neg (p \vee q ) \equiv \neg p \wedge \neg q $$

$$ \underline{Note}\text{ the similarity to}\\ \overline{A\cap B} = \bar{A}\cup\bar{B}\\\overline{A\cup B}=\bar{A}\cap\bar{B} \\ \text{De Morgan's Laws for Sets} $$

Exercise: Verify these by forming four-row truth tables

p q $\neg (p \wedge q )$ $\neg p \vee \neg q$ $\neg (p \vee q )$ $\neg p \wedge \neg q$
T T F F T T
T F T T F F
F T T T F F
F F T T F F

Consequence: We don’t need $\vee$ either.

$$ p\vee q\equiv\neg\neg(p\vee q)\\\equiv\neg(\neg(p\vee q))\\\equiv\neg(\neg p\wedge\neg q) $$

Commutative Associative and Distributive Laws In logic:

$a+b = b+a\\ a\times b=b\times a$ Commutative laws $p\vee q \equiv q \vee p\\ p\wedge q \equiv q\wedge p$
$(a+b)+c=a+(b+c)\\ (a×b)×c=a×(b×c)$ Associative laws $(p \vee q )\vee r \equiv p \vee (q \vee r)\equiv p\vee q\vee r \\ (p \wedge q )\wedge r \equiv p \wedge (q \wedge r)\equiv p\wedge q\wedge r$
$a×(b+c)=a×b+a×c$ Distributive laws $p \vee (q \wedge r) \equiv (p \vee q)\wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q)\vee (p \wedge r)$

MATH1019L4.m4a


Note,