Natural language is inherently ambiguous The same words in different contexts can mean different things.

EECS1019L1.m4a

MATH1019 L2.m4a

Proposition

Proposition not Proposition
A is B DON’T/HELLO
If-Then $a^2+b^2=c^2$
$\exist a\exist b(a^2+b^2=25)$

A propositional variable is variable that is only allowed to be true OR false.

<aside> 💡 We like lower letters starting around p.(p, q, r, t, u, v)

T stands for true. F stands for false.

</aside>

$\neg P$

<aside> ✏️ The negation of p is the statement ”It is not the case that p.”

We write this a $\neg p$ Also: $\sim p,\ \ \bar{p},\ \ p',\ \ Np,\ \ !p$

</aside>

Ex ~

When we’re lucky, we can simplify a negation linguistically.

p q $\neg P$
T T F
T F F
F T T
F F T

AND

<aside> 🤭 $p\wedge q$

</aside>

OR

<aside> 😅 $p \vee q$

</aside>

p q $p\wedge q$ $p \vee q$
T T T T
T F F T
F T F T
F F F F

Exclusive or (XOR)

$$ p \oplus q \equiv q\oplus p\equiv \neg(p\lrarr q)\\ (p\oplus q)\oplus r\equiv p\oplus (q\oplus r)\\ p\wedge(q\oplus r) \equiv (p\wedge q)\oplus(p\wedge r) $$

Untitled

p q $p\oplus q$
T T F
T F T
F T T
F F F

IMPLY gate