Logic

Propositional Logic

<aside> 💡 Proposition: building block of logic

</aside>

<aside> 💡 Declarative sentence: either True or False ( Truth Value )

</aside>

Connectives
Negation $\neg P$
Conjunction $p\wedge q$ “and”
Disjunction $p \vee q$ “or” Inclusive
Exclusive OR $p\oplus q$
Implication $p\rarr q$ $\neg{p}\ \vee\ q$
Biconditional $p\lrarr q$ “if and only if” “iff”
Contradiction never be true
Tautology alway true
Contingencies
Converse $q\rarr p$
Inverse $\neg p \rarr \neg q$
Contrapositive $\neg q \rarr p$

Propositional Equivalences and Quantifiers

Equivalence Name
$p \wedge T \equiv p \\ p\vee F \equiv p$ Identity laws
$p \vee T \equiv T\\p\wedge F \equiv F$ Domination laws
$p \wedge p \equiv p \\ p\vee p \equiv p$ Idempotent laws
$\neg(\neg p) \equiv p$ Double negation law
$p\vee q \equiv q \vee p\\ p\wedge q \equiv q\wedge p$ Commutative laws
$(p \vee q )\vee r \equiv p \vee (q \vee r) \\ (p \wedge q )\wedge r \equiv p \wedge (q \wedge r)$ Associative laws
$p \vee (q \wedge r) \equiv (p \vee q)\wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q)\vee (p \wedge r)$ Distributive laws
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ De Morgan’s laws
$p \vee (p \wedge q) \equiv p \\ p \wedge (p \vee q) \equiv p$ Absorption laws
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ Negation laws
$p\rarr q \equiv \neg p \vee q$
“Conditional Disjunctive Equivalence”

$$ \neg(\exist xP(x))\equiv\forall x(\neg P(x))\\\text{while} \\ \neg(\forall x Q(x))\equiv\exist x(\neg Q(x)) $$

Inference and Proofs

Untitled

Methods of proof

Untitled

$$ \text{universal modus tollens: }\\ ∀x(P(x) → Q(x))\\

¬Q(a), \text{where a is a particular element in the domain}\\

∴ ¬P(a) $$

Sets

Sets Operations

Union $A\cup B$
Intersection $A\cap B$
Difference $A \setminus B$
Complement $\overline{A}=U\setminus A$
Cartesian Product $A\times B=\{(a,b)

Subsets

$$ \empty \sube S\\ S\sube S\\ \text{proper subset:} A\sube B \wedge A\ne B $$

Power Sets

$$ |\mathcal{P}(A)|=2^{|A|} $$