<aside> 💡 Proposition: building block of logic
</aside>
<aside> 💡 Declarative sentence: either True or False ( Truth Value )
</aside>
Connectives | |||
---|---|---|---|
Negation | $\neg P$ | ||
Conjunction | $p\wedge q$ | “and” | |
Disjunction | $p \vee q$ | “or” | Inclusive |
Exclusive OR | $p\oplus q$ | ||
Implication | $p\rarr q$ | $\neg{p}\ \vee\ q$ | |
Biconditional | $p\lrarr q$ | “if and only if” | “iff” |
Contradiction | never be true |
---|---|
Tautology | alway true |
Contingencies | … |
Converse | $q\rarr p$ |
Inverse | $\neg p \rarr \neg q$ |
Contrapositive | $\neg q \rarr p$ |
Equivalence | Name |
---|---|
$p \wedge T \equiv p \\ p\vee F \equiv p$ | Identity laws |
$p \vee T \equiv T\\p\wedge F \equiv F$ | Domination laws |
$p \wedge p \equiv p \\ p\vee p \equiv p$ | Idempotent laws |
$\neg(\neg p) \equiv p$ | Double negation law |
$p\vee q \equiv q \vee p\\ p\wedge q \equiv q\wedge p$ | Commutative laws |
$(p \vee q )\vee r \equiv p \vee (q \vee r) \\ (p \wedge q )\wedge r \equiv p \wedge (q \wedge r)$ | Associative laws |
$p \vee (q \wedge r) \equiv (p \vee q)\wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q)\vee (p \wedge r)$ | Distributive laws |
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ | De Morgan’s laws |
$p \vee (p \wedge q) \equiv p \\ p \wedge (p \vee q) \equiv p$ | Absorption laws |
$\neg (p \wedge q ) \equiv \neg p \vee \neg q\\\neg (p \vee q ) \equiv \neg p \wedge \neg q$ | Negation laws |
$p\rarr q \equiv \neg p \vee q$ | |
“Conditional Disjunctive Equivalence” |
$$ \neg(\exist xP(x))\equiv\forall x(\neg P(x))\\\text{while} \\ \neg(\forall x Q(x))\equiv\exist x(\neg Q(x)) $$
$$ \text{universal modus tollens: }\\ ∀x(P(x) → Q(x))\\
¬Q(a), \text{where a is a particular element in the domain}\\
∴ ¬P(a) $$
Union | $A\cup B$ |
---|---|
Intersection | $A\cap B$ |
Difference | $A \setminus B$ |
Complement | $\overline{A}=U\setminus A$ |
Cartesian Product | $A\times B=\{(a,b) |
$$ \empty \sube S\\ S\sube S\\ \text{proper subset:} A\sube B \wedge A\ne B $$
$$ |\mathcal{P}(A)|=2^{|A|} $$