<aside> 🔖 A5 B1
(a)
$$ \text{Witness: }(1,28)\\ 3x^3+6x^4+4\le C(x^2+\frac{1}{4}x^4)\\\text{Let }k=1,C=28,\text{When }x>1:\\(3x^3+4)+6x^4\le (28x^2+x^4)+6x^4 $$
(b)
$$ \text{Witness:}(8,\frac{1}{24})\\x^2+\frac{1}{4}x^4\le C (3x^3+6x^4+4)\\\text{Let }k=8,C= \frac{1}{24},\text{ When }x>8:\\ x^2+\frac{1}{4}x^4\le(\frac{x^3}{8}+\frac{1}{6})+\frac{x^4}{4} $$
</aside>
<aside> 🔖 A5 B2
(a) Yes, $f(x)$ is $\mathcal{O}\Big(g(x)\Big)$.
$$ \text{Since }\forall x>1\ s.t.\ x^2(\log x)^3\le x^3(\log x)^2 \\i.e\ |f(x)|\le C|g(x)| $$
(b) No, $g(x)$ is NOT $\mathcal{O}\Big(f(x)\Big)$.
Since there are no $(k,C)$ s.t $|g(x)|\le C|f(x)|$whenever $x> k$.
</aside>
<aside> 🔖 A5 B3
(a)
$m$ | $n$ | $f((m,n))$ | $m_{(2)}$ | $n_{(2)}$ | $(f((m,n)))_{(2)}$ |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 2 | 0 | 1 | 10 |
0 | 2 | 4 | 0 | 10 | 100 |
0 | 3 | 6 | 0 | 11 | 110 |
0 | 4 | 8 | 0 | 100 | 1000 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 5 | 1 | 1 | 101 |
1 | 2 | 9 | 1 | 10 | 1001 |
1 | 3 | 13 | 1 | 11 | 1101 |
1 | 4 | 17 | 1 | 100 | 10001 |
2 | 0 | 3 | 10 | 0 | 11 |
2 | 1 | 11 | 10 | 1 | 1011 |
2 | 2 | 19 | 10 | 10 | 10011 |
2 | 3 | 27 | 10 | 11 | 11011 |
2 | 4 | 35 | 10 | 100 | 100011 |
3 | 0 | 7 | 11 | 0 | 111 |
3 | 1 | 23 | 11 | 1 | 10111 |
3 | 2 | 39 | 11 | 10 | 100111 |
3 | 3 | 55 | 11 | 11 | 110111 |
3 | 4 | 71 | 11 | 100 | 1000111 |
4 | 0 | 15 | 100 | 0 | 1111 |
4 | 1 | 47 | 100 | 1 | 101111 |
4 | 2 | 79 | 100 | 10 | 1001111 |
4 | 3 | 111 | 100 | 11 | 1101111 |
4 | 4 | 143 | 100 | 100 | 10001111 |
(b)
<aside> 💡 $37_{(2)}=1001\ 01$
Since $1001_{(10)}=9,$
$m=1, n=9$.
</aside>
(c) $f$ is a bijection, so
and assume $F=f(x,y)\rArr g(x,y,z)=f(F,z):$
so $g:\N\times\N\times\N\rarr\N$ defined by $g(x,y,z)=f(f(x,y),z)$ is bijection too.
</aside>
<aside> 🔖 A5 B4
First,
If $f(x)=f(y)$, then $\frac{1}{1+e^x}=\frac{1}{1+e^y}$
i.e. $e^x=e^y\rarr x=y$
so $f:\R\rarr (0,1)$ is an injection.
On the other hand,
If $x=y\rArr f^{-1}(\frac{1}{1+e^x})=f^{-1}(\frac{1}{1+e^y})$,
then $\frac{1}{1+e^x}=\frac{1}{1+e^y}$
so $f^{-1}:(0,1)\rarr\R$ is an injection too.
Therefore, $f:\R\rarr (0,1)$ is a bijection.
i.e. $f:\R\rarr (0,1)$ is a surjection too.
And also $|R|=|(0,1)|$.
</aside>
<aside> 🔖 A5 B5
(a)
$c_0$ | $c_1$ | $c_2$ | $c_3$ |
---|---|---|---|
0 | 1 | 4 | 10 |
<aside> 💡 (b)
$$ \begin{aligned}c_n&=\sum_{k=1}^{n}\left(\frac{1}{2}k^2+\frac{1}{2}k\right)\\&=\frac{1}{2}\left(\frac{n(n+1)}{2}+\frac{(2n+1)(n+1)n}{6}\right)\\&=\frac{n(n+1)(n+2)}{6}\end{aligned} $$
</aside>
<aside> 💡 (c)
$$ c_n-c_{n-1}=\frac{n(n+1)(n+2)-(n)(n+1)(n-1)}{6}\\=\frac{n(n+1)}{2} $$
</aside>
<aside> 💡 (d)
We can observe the defined of $c_n=\sum_{k=1}^{n}\left(\frac{1}{2}k^2+\frac{1}{2}k\right)$
and know that $c_n$ is the sum of sequence $b_n=(\frac{1}{2}n^2+\frac{1}{2}n)$ ,
so $c_n-c_{n-1}=b_n$.
</aside>
<aside> 💡 (e)
$$ c_6=\frac{6\times(6+1)\times(6+2)}{6}=56 $$
</aside>
</aside>